What will you have to take with you?

My guest post for my university’s School of Graduate Studies blog is up! (You can read it here.) The inspiration was a new radio podcast that we have in the works on research here at Queen’s – scientific and otherwise. I’ve been working on the concept with Vee, an English PhD, and Savita, an undergraduate student who is keen to make top-notch radio documentaries.

I wrote the blog post to try to drum up some interest in being a subject of the radio show, but I hope it has a few nuggets of advice for those finishing and/or considering grad school as well.

Employed science

It’s when applied science gives back, contributing a piece to the basic research puzzle.

Jaded grad students like me get a warm fuzzy feeling when we hear about people reaping unexpected benefits – economic or social – from the results of pure science. Last night I was reminded that this can work in the opposite direction.

Matthew Mecklenburg and Chris Regan, two physicists from UCLA with interests in quantum theory and its applications for sustainable energy, wanted to design a better transistor. Instead, they discovered something fundamental about the structure of the universe1. Hidden from our eyes and our finest instruments, the space that surrounds us might be more like a chessboard than a continuous expanse.

Mecklenburg, a grad student, was investigating graphene as a potential material to make more efficient transistors – the little bits of silicon that allow computers and essentially all modern electronic devices to function. He needed some precise measurements of the way light interacts with graphene at the nanoscale, to assess feasibility of the new design. These experiments gave Mecklenburg a quantitative picture of the way electrons hop around in the lattice of carbon atoms in graphene. And that’s when the chessboard struck.

Mecklenburg and Regan realized that the hopping behaviour of electrons in graphene was formally equivalent to what happens when an electron flips its “spin” – a theoretical concept that has remained an enigma since it was described in the early 20th century.

Continue reading →

Super indelible flower colours

How do you fire a pollinator?

That was the question in last week’s Ecology, Evolution and Behaviour departmental seminar. The speaker was James Thomson, an evolutionary ecologist from the University of Toronto who specializes in the interactions between plants and their animal pollinators. His research shows that nectar-addled hummingbirds are like corporate ladder climbers. Bees, on the other hand, are always getting canned.

Pollination syndromes have been a major focus of Thomson’s work1. These are not garden ailments. “Syndrome” here refers to a suite of traits that tend to be found together, in this case because they help a plant attract a certain kind of pollinator.

Bird-pollinated flowers tend to be red and tube-shaped, producing lots of nectar but relatively little scent. Birds have sharp vision, and do not depend much on their sense of smell. Honeysuckle is an example of this type of flower – or anything that looks like a hummingbird feeder. Bee-pollinated flowers come in shades of yellow, blue, and purple, because bees cannot see the colour red. Familiar examples are sunflowers, snapdragons and wild pansies. These often have petals modified into special bee landing platforms. Flowers that specialize on birds and bees are common, but there are many other pollination syndromes. If a flower is orange-brown and smells like rot, it probably depends on carrion flies. Mammal-pollinated flowers often smell fruity, like synthetic grape flavouring.

In his talk, James Thomson reviewed a decade’s worth of work on beardtongue flowers from the genus Penstemon2. In 2007, Thomson and his collaborators used genetic analyses to build the evolutionary tree for close to 200 of the species in this group3. When flower traits were mapped on to the Penstemon family tree, interesting patterns were revealed.

First, the bird and bee pollinated species were distributed broadly throughout, implying frequent transitions between these two syndromes in the history of the Penstemon group. Like an evolutionary magnet, pollination by one type of animal or another exerts a strong pull on multiple flower traits in concert. Evolving species are drawn rapidly towards a new form, so you almost never find intermediates.

This lability or changeable nature of floral traits was not much of a surprise, but the Penstemon tree also suggested something incredible. Floral evolution was directional.

Continue reading →

Evolutionary rescue

Can evolution save us from the brink of collapse?

Andy Gonzalez thinks so. Gonzalez, an ecologist from McGill University, gave an entertaining seminar to the department last Thursday on the subject. His research group works on the causes and consequences of biodiversity loss, using mathematical models and controlled experiments to investigate how environmental change might affect populations.

Gonzalez teamed up with McGill’s Graham Bell, who is known for using simple systems like yeast and algae to tinker with the evolutionary process through experimental evolution. Gonzalez describes their third collaborator on this project as “painful to work with, but once things were up and running [he was] amazing.” He was, in fact, a robot.

Continue reading →