If you had $1 million to go towards the environment, how would you spend it?
I asked ~100 students in BIOL111 this question, to cap off the end of our “Ecology and the Environment” summer course. More below…
If you had $1 million to go towards the environment, how would you spend it?
I asked ~100 students in BIOL111 this question, to cap off the end of our “Ecology and the Environment” summer course. More below…
My article on the behavioural economics of grades is out, and it’s the cover story this month in University Affairs magazine!
I had a blast doing interviews for this story. I tried to pick profs with a reputation for being great teachers in classes that are popular despite being tough. I learned a ton talking to them, but I have to say I was disappointed that I couldn’t take this story further. I was hoping for something more conclusive about how behavioural economics could be applied to grades. We know that humans aren’t particularly rational when it comes to incentives, and grades perform a dual feedback/incentive role – and yet we have no idea how students respond to grading schemes, or whether some of the most common practices might be entirely counterproductive. In the end, I think the incentive effect of grades is something that we should be studying experimentally.
It’s when applied science gives back, contributing a piece to the basic research puzzle.
Jaded grad students like me get a warm fuzzy feeling when we hear about people reaping unexpected benefits – economic or social – from the results of pure science. Last night I was reminded that this can work in the opposite direction.
Matthew Mecklenburg and Chris Regan, two physicists from UCLA with interests in quantum theory and its applications for sustainable energy, wanted to design a better transistor. Instead, they discovered something fundamental about the structure of the universe1. Hidden from our eyes and our finest instruments, the space that surrounds us might be more like a chessboard than a continuous expanse.
Mecklenburg, a grad student, was investigating graphene as a potential material to make more efficient transistors – the little bits of silicon that allow computers and essentially all modern electronic devices to function. He needed some precise measurements of the way light interacts with graphene at the nanoscale, to assess feasibility of the new design. These experiments gave Mecklenburg a quantitative picture of the way electrons hop around in the lattice of carbon atoms in graphene. And that’s when the chessboard struck.
Mecklenburg and Regan realized that the hopping behaviour of electrons in graphene was formally equivalent to what happens when an electron flips its “spin” – a theoretical concept that has remained an enigma since it was described in the early 20th century.
Can evolution save us from the brink of collapse?
Andy Gonzalez thinks so. Gonzalez, an ecologist from McGill University, gave an entertaining seminar to the department last Thursday on the subject. His research group works on the causes and consequences of biodiversity loss, using mathematical models and controlled experiments to investigate how environmental change might affect populations.
Gonzalez teamed up with McGill’s Graham Bell, who is known for using simple systems like yeast and algae to tinker with the evolutionary process through experimental evolution. Gonzalez describes their third collaborator on this project as “painful to work with, but once things were up and running [he was] amazing.” He was, in fact, a robot.