Hipsters who hunt

An update on a previous post: my good friends Martin and Vanya are the official poster boys of a new movement.

Collecting oyster mushrooms north of Kingston. Photo by Charlie Croskery.

Read about it here, as told by Vanya’s sister-in-law, Emma Marris. It’s a great article. Charlie took the photos at the Croskery farm (more here). I helped with the shoot, including costume changes and strategic placement of my shadow to avoid lens flare. It was a lot of fun. The only problem is, hipster isn’t the right word for what these guys do. Not sure what would be.

A microscopic predator-prey chase

In terms of behaviour, animals have plants beat – though some would argue that plants have their own brand of intelligence.

Not all photosynthesizing beasts are firmly planted, though, and many that live in the water can move. Aquatic algae, for instance, often have whip-like structures (called cilia and flagella) that they can use to propel themselves along in the water. Some land plants also produce flagellated sperm that can move on their own volition.

H. akashiwo

A single-celled marine algae with flagella for getting around. From Wikimedia.

In the ocean, the ability to move can be beneficial, allowing algal cells to find food or move to a suitable environment. Motile cells can also avoid their predators by swimming away – something land plants definitely cannot do. Swimming algae incredibly slow, topping out at about half a centimetre per minute – but a new study suggests that the slow race between algae and their predators might be responsible for a far bigger, more dangerous phenomenon.

Continue reading →

To save trees, major rethink is needed

When you stop to think about it, few things are weirder than a tree. Like us, they’re largish organisms made up of many cells, each with a central nucleus – but we have little else in common. Plants diverged from our early ancestors well before there was anything bigger than a single cell around. They split from the animal lineage even before fungi, which leads to a shocking conclusion. That spot of mould in the vegetable drawer? It’s more closely related to you than the plants upon which you both depend.

Small wonder, then, that plants don’t live and die by the same rules as animals – but this could have dire implications. That’s the message of a new study by Jonathan Davies of McGill University, published in PLoS Biology. Davies and his international collaborators have shown that the factors causing extinction in plants are entirely unexpected, and the upshot is that the current IUCN Red List criteria for listing endangered species – which are based on animal studies – might be useless when it comes to plants.

Davies and his team used the latest the comprehensive Red List data for all flowering plant species in two locations: the United Kingdom and the South African Cape. The Cape is a biodiversity hotspot with thousands of endemic species: plants that evolved there, and that can be found nowhere else. The UK flora, in contrast, is made up of species from other regions that moved in after the retreat of Pleistocene glaciers.

Previous work has shown that among mammals, we are most likely to lose species with large body sizes and long generation times – giant pandas and elephants are classic examples. But according to the new analysis, plants break the mold. Davies and coauthors found that the kinds of plants most at risk in the UK are different from those at risk of extinction in the Cape, indicating that basic traits like size have nothing to do with it. Using a detailed evolutionary history of the Cape species, the team also found evidence that extinction risk in plants is tightly linked to mode of speciation: the Cape species most at risk tend to be ones from the younger, rapidly-evolving lineages.

This implies that in plants, extinction is pruning the tips of the evolutionary tree. The authors suggest an explanation: unlike animals, new plant species tend to arise from small isolated populations that are at the extremes of a much larger ancestral range. Thus, a new plant starts off with a limited distribution, and because range size is an important criteria for Red List risk, it is also highly vulnerable.

The team’s analysis of anthropogenic factors turned up an additional surprise. For the Cape flora, human-induced habitat changes such as urbanization and agriculture cannot explain extinction risk of local plants. In other words, there is no simple geographic correspondence between human activity and plant decline. As the authors put it, places like the South African Cape might therefore be both “cradles and graveyards of diversity”, regardless of human activities.

This study suggests that a major strategy revision is in order if we want to conserve the world’s plants – a group that we all depend upon for oxygen and energy. More generally, risk criteria for one taxonomic group cannot necessarily be applied to another, since the pathways to rarity may be as foreign as the species themselves.

Further Reading

Davies, J. T. et al. 2011. PLoS Biology: 9(5): e1000620.

You are what you feed

What makes you you?

The problem of identity – and its flip-side, change – has been vexing philosophers ever since the discipline got started in ancient Greece. As early as 500 years BC, Heraclitus was musing about the ever-changing nature of a flowing river, recorded by his contemporary Plato with the enduring line, “You cannot step in the same river twice.”

This issue comes up everywhere. In an astronomy course I took at university, the professor gave us a mind-boggling assignment: calculate the number of atoms in your body that were once part of a living dinosaur. The answer was a lot, and though I don’t recall the exact number, the question could have just as easily been about sharing atoms with Heraclitus, or Plato, for that matter. The point is that most of the molecules in our bodies are being replaced and recycled, all of the time1. Like a flowing river, you are literally not the same bag of stuff that you were last year, or even last week; although a more accurate way to put it might be that you are a bag of somewhat different stuff than you contained before.

This raises a tough question. If a different collection of matter can be the same person, how much has to change before you aren’t yourself anymore? The implications are nearer than you might think. Organ transplants, bionic limbs and electronic implants – including devices implanted in the brain – are all within the range of current medicine. How much of a person’s body can we replace and still consider them to be the same person?

I don’t have the answer, and I’m not sure anyone ever will, although some would argue that it is a mistake to assume that there is anything like a constant “you” in the first place. For example, the philosopher Daniel Dennett contends that the idea of a continuous self is really just an illusion produced by the brain2.

Biology has a thing or two to say about the matter. It turns out that part of what makes you you is other species. Specifically, the ones living inside you: the veritable ecosystem of bacteria and other microscopic organisms inside your gut. Evidence is mounting that the microcosm within is an important part of who we are: it provides a unique signature of individuality. It can also determine future health. It might even be part of what defines us as human, since a new study shows that as we evolved from ape ancestors, so did our inner ecosystems3.

Continue reading →

Evolutionary rescue

Can evolution save us from the brink of collapse?

Andy Gonzalez thinks so. Gonzalez, an ecologist from McGill University, gave an entertaining seminar to the department last Thursday on the subject. His research group works on the causes and consequences of biodiversity loss, using mathematical models and controlled experiments to investigate how environmental change might affect populations.

Gonzalez teamed up with McGill’s Graham Bell, who is known for using simple systems like yeast and algae to tinker with the evolutionary process through experimental evolution. Gonzalez describes their third collaborator on this project as “painful to work with, but once things were up and running [he was] amazing.” He was, in fact, a robot.

Continue reading →