It’s when applied science gives back, contributing a piece to the basic research puzzle.
Jaded grad students like me get a warm fuzzy feeling when we hear about people reaping unexpected benefits – economic or social – from the results of pure science. Last night I was reminded that this can work in the opposite direction.
Matthew Mecklenburg and Chris Regan, two physicists from UCLA with interests in quantum theory and its applications for sustainable energy, wanted to design a better transistor. Instead, they discovered something fundamental about the structure of the universe1. Hidden from our eyes and our finest instruments, the space that surrounds us might be more like a chessboard than a continuous expanse.
Mecklenburg, a grad student, was investigating graphene as a potential material to make more efficient transistors – the little bits of silicon that allow computers and essentially all modern electronic devices to function. He needed some precise measurements of the way light interacts with graphene at the nanoscale, to assess feasibility of the new design. These experiments gave Mecklenburg a quantitative picture of the way electrons hop around in the lattice of carbon atoms in graphene. And that’s when the chessboard struck.
Mecklenburg and Regan realized that the hopping behaviour of electrons in graphene was formally equivalent to what happens when an electron flips its “spin” – a theoretical concept that has remained an enigma since it was described in the early 20th century.