Nest in the city

One of the most incredible things about peafowl is how well these birds thrive in the suburbs. There were hundreds in Arcadia, CA, where I studied them, and every once in a while I hear about some other town where they’ve taken over – Orange County, Palos Verdes, Miami – they even disperse and occasionally pop up somewhere new (like here, or here). I’ve been told that in India (where the species is originally from), flocks also tend to settle down in villages. (And the name for a group of peafowl? A muster!) And peacocks are now on the cover of a book on urban birds1.

So what makes peafowl so much better at urban living than other, similar species?

It could be that they’re catholic about their diets, or that they’re tolerant of a broad range of environmental conditions2. Other research has suggested that, in mammals at least, successful invaders tend to have relatively large brains3 – possibly because a large brain confers the ability to respond flexibly to new situations. American crows fit this theory, as an urban success story with relatively large brains. But peafowl are some of the smallest brained birds out there, when you consider brain size relative to body size – and pigeons, starling and house sparrows aren’t particularly well-endowed, either. So what if it has more to do with how they use their brains to adapt?

A new study points to an intriguing benefit of city life for some birds, and it has me wondering about learning as a mode of urban adaptation. Apparently, some urban birds use cigarette butts to build their nests – and researchers have now shown that the cigarette butts actually improve the living conditions for young birds.

Continue reading →

The currency on campus

My article on the behavioural economics of grades is out, and it’s the cover story this month in University Affairs magazine!

I had a blast doing interviews for this story. I tried to pick profs with a reputation for being great teachers in classes that are popular despite being tough. I learned a ton talking to them, but I have to say I was disappointed that I couldn’t take this story further. I was hoping for something more conclusive about how behavioural economics could be applied to grades. We know that humans aren’t particularly rational when it comes to incentives, and grades perform a dual feedback/incentive role – and yet we have no idea how students respond to grading schemes, or whether some of the most common practices might be entirely counterproductive. In the end, I think the incentive effect of grades is something that we should be studying experimentally.

Hipsters who hunt

An update on a previous post: my good friends Martin and Vanya are the official poster boys of a new movement.

Collecting oyster mushrooms north of Kingston. Photo by Charlie Croskery.

Read about it here, as told by Vanya’s sister-in-law, Emma Marris. It’s a great article. Charlie took the photos at the Croskery farm (more here). I helped with the shoot, including costume changes and strategic placement of my shadow to avoid lens flare. It was a lot of fun. The only problem is, hipster isn’t the right word for what these guys do. Not sure what would be.

The Owl: why kids make great science writers

I finally had a chance to watch Steven Pinker’s excellent lecture on science communication this weekend. Pinker, a psychologist, linguist and top-notch writer, argues that psychology can help us tune up our writing and become better communicators.

His first point is that cognitive psychology points to the model that we should be aiming for: prose that directs the reader’s attention to something in the world that they can then come to understand on their own.

He also discusses why this is so hard to do: The Curse of Knowledge. Once you know a lot about something, it’s hard to put yourself in the mindset of your readers – i.e., the people who don’t know anything about the thing you are trying to write about. This is because it’s hard work, cognitively, to keep track of what other people know. The classic example of this is the false belief task in psychology. If you show a child a box of Smarties (the chocolate candy), and then ask him or her what might be in the box, the child will say candy. Suppose you then reveal that the box actually contains something else – coal. Then close the box and ask the child what another person would think is inside. A 7 year old will correctly say candy, but a child younger than 4 or so will claim that others would think it contains coal. Up until about age 4, we don’t seem to grasp that other people can have false beliefs about the world. Pinker’s point is that this ability – also known as theory of mind – isn’t a cut and dried thing that we suddenly achieve at age 4. It’s a sophisticated skill that proves to be a challenge even for adults.

His advice on writing? It’s pretty standard stuff. Pinker enlists his mom – or in other words, an intelligent reader who just happens to not know a lot about his particular topic already. His other point is to take a break from your writing before you edit, to give yourself time to shift away from the mental state you were in when you wrote it. You can also read your work aloud, since that seems to engage a different mental state as well (I wonder why?). It makes me wonder whether there is anything we can do to harness this mind reboot effect more efficiently. Say you don’t have a lot of time and your mom is not available. How can you reset your brain on demand? I’m thinking of a 20 minute nap, reading some fiction, or doing some physical exercise before editing your paper – which is best? I imagine this is something that cognitive neuroscientists will be able to tell us pretty soon.

Pinker ends with some sage advice: most good writers learn by example. So find a bit of writing that you admire, and try to figure out what makes it great. His choice? The short essay called “The Owl”. It’s remarkable for its clarity and worth checking out in the video below:

If only it was that easy for the rest of us to escape the curse of knowledge.

You can watch the whole lecture by Steven Pinker here. (The Owl is at the 57 minute mark.)

Is animal care due for an update?

Canadians will fiercely defend nearly any Canadian-made thing, and we have an uncanny ability to keep track. Insulin? Discovered by a Canadian. The telephone? Also Canadian. Sir Sandford Fleming and his time zones? Canadian too. Tom Cruise? Spent his childhood here.

At the philosophy symposium here in September on ethics and animals, I learned of yet another point of pride: our national body governing the care of animals in research was one of the first in the world. Although the first official law to prevent cruelty to animals was passed in Britain in 1876, and the US had its Animal Welfare Act a few years before Canada’s Council on Animal Care (CCAC) was official, the CCAC had its beginning in the early 1960s – and it was revolutionary at the time.

But is it due for an update?

Continue reading →

Chicken of the trees

This month has been an eye-opener for me. Two weeks ago, I was rubbing shoulders with animal rights activists. One week later, I was hunting at the Croskery farm. And last night, we dined on the spoils – a fantastic squirrel stew that gave Thanksgiving dinner a run for its money.

How did it happen?

Continue reading →

A microscopic predator-prey chase

In terms of behaviour, animals have plants beat – though some would argue that plants have their own brand of intelligence.

Not all photosynthesizing beasts are firmly planted, though, and many that live in the water can move. Aquatic algae, for instance, often have whip-like structures (called cilia and flagella) that they can use to propel themselves along in the water. Some land plants also produce flagellated sperm that can move on their own volition.

H. akashiwo

A single-celled marine algae with flagella for getting around. From Wikimedia.

In the ocean, the ability to move can be beneficial, allowing algal cells to find food or move to a suitable environment. Motile cells can also avoid their predators by swimming away – something land plants definitely cannot do. Swimming algae incredibly slow, topping out at about half a centimetre per minute – but a new study suggests that the slow race between algae and their predators might be responsible for a far bigger, more dangerous phenomenon.

Continue reading →

Neanderthals were into birds

Well, into their feathers anyway. Thanks to a new study out this week, we now have paleontological proof that Neanderthals collected birds for more than just food. They probably used bird feathers for decoration – just like we do – suggesting that we aren’t the only hominid species to have developed an artistic culture1.

The research team – led by Clive Finlayson – used a combination of archaeological and paleontological evidence from several different sites where Neanderthals lived during the Paleolithic, ranging from Gibraltar in southern Spain to sites in the near East. For each site, the researchers tallied up the number of different bird species found in the fossil record at the same time and place as the Neanderthals, and they discovered that certain species were most frequent. The most common species were raptors (like vultures, kites and golden eagles) and corvids (like crows and choughs). Crucially, the researchers found that the remains of these particular species are far more abundant at the Neanderthal dwellings than they are at other paleontological sites – suggesting that the bird bones were there for a reason.

Continue reading →

Pitting science against media

Laysan albatross pair

Photo by Dick Daniels from Wikimedia Commons.

Odds are that the Laysan albatrosses in the photo above are a male and his female mate, but it’s worth checking their sex chromosomes to be sure. The reason? In this long-lived species, most of the adults are females, and two females often pair up to raise chicks (fertilized by other males of course). In some populations, up to a third of the nesting couples are female-female pairs1.

They’re not alone – plenty of other organisms engage in same-sex courtship, copulation and even long-term pairing. And it’s often for a good reason. Take the deep sea squid Octopoteuthis deletron. Researchers from the Monterey Bay Aquarium recently took to the deep in submarines to study their sex lives. They observed sperm packets attached to the bodies of both male and female squid, suggesting that males inseminate every other squid they can, “indiscriminately and swiftly” – a good strategy in a dark habitat where it may be hard to tell who you’re looking at2.

The media response was predictable, calling the squid bisexual, sex-starved, same-sex swingers. Promiscuous? Maybe. Indiscriminate? Yes. But pervy? I’m not so sure.

It’s an issue that Andrew Barron and Mark Brown commented on recently in the journal Nature3. Sensationalized coverage of research, especially when it makes great leaps to compare animal behaviour to human sex, can do real damage – to science and to society as well, by dredging up tired stereotypes about sex.

That was Barron and Brown’s main point, and I certainly agree. But their article got me far more worked up than the sex-starved squid.

Continue reading →

Very superstitious

The Shark Worlds came to Kingston last month – not a fish thing, but rather the world championships for the Shark class of sailboat. My friend Martin was competing (his boat name? Cloaca. Martin is a biologist who takes taxonomic accuracy seriously).

As he was recounting some of his adventures, he mentioned that he had done quite well in the preliminary practice race. Memories flooded back from my former life as a sailor: “Did you finish it? Never finish the practice race!”

“What?!”

I explained that it was bad luck, especially if you win the practice race. Better to duck the finish line instead of crossing it. Our friend Chris, another evolutionary biologist, dismissed my advice. What did luck have to do with it? We’re rational scientists, right?

I struggled to explain it. “It’s like wearing the conference T-shirt during the conference.” It marks you as new and vulnerable. And if you do well, it does nothing for your mental game. Why set yourself up to have something to lose before the event even begins?

Chris was not convinced, and I’ve been thinking about it ever since – especially since today is a near-miss Friday the 13th. Can someone be rational and superstitious at the same time?

Continue reading →

Peacocking on Parliament Hill

Here’s my poster from the Evolution conference in Ottawa:

Evolution poster

The colours are a bit off in this shrunken version, but you can download a larger PDF version here. The poster covers some of my work on the lesser-known green peacock (a close relative of the familiar blue variety). Green and blue peafowl have markedly different body colours, and in the green species, the females are as colourful as the males. Interestingly, the two species have eyespot feathers that are nearly identical. Why are their eyespots so similar? I think it’s because these feathers are crucial for courtship, and females of the two species have similar taste.

One of the main results I’ve found is that despite appearances, there are subtle differences in the eyespot colours of the two species. These differences, while slight, might be readily apparent to birds since they have excellent colour vision. I think the differences are the result of adaptation to different light conditions. Blue peacocks live in India, and prefer bright, open habitat like riverbeds and agricultural fields. Green peacocks live in darker forested areas of Southeast Asia, and their eyespots may be slightly brighter and greener to take advantage of dim forest light.

It was my first Evolution conference, and I hope I can get to another. The talks were fantastic. Author David Quammen summed things up nicely in his public lecture: “Science is people.” This theme carried through the meeting, from Rosie Redfield’s tale of the pitfalls of falling in love with your hypothesis to a rally where scientists young and old marched together on Parliament Hill (see my pictures here). How often does that happen?

Innovative, naturally

bluegill sunfish field work

Chandra Rodgers sampling bluegill sunfish on Lake Opinicon.

This spring I had the opportunity to write a feature article on the Queen’s University Biological Station, a site just north of Kingston where researchers have a long history of major scientific breakthroughs involving modest Ontario wildlife. Several of these discoveries have proved to be as useful as they are compelling. The story was published in the Kingston Whig Standard, and on the web through the Queen’s Alumni Review and InnovationCanada.ca. Funding for photography was provided by the CFI’s 2011 Emerging Science Journalists Award.

Talking to scientists about their research was by far the best part of this project – much more fun than I expected! And even the toughest interviews were a gold mine of ideas. Thanks to everyone who participated. The full story is posted below…

Continue reading →

Life imitates [filmmaking] art

Congratulations to Myra Burrell – her peacockumentary has been short-listed for the Animal Behavior Society’s film festival!

Myra, a veteran of the natural history film program at the University of Otago in New Zealand, traveled to California with me in 2010. She helped with peacock field work, capturing more females than anyone thought possible. Somehow, in the meantime, she made a movie about the birds. It’s a short film that gives you an idea about what happens on a peacock lek, from the hen’s point of view.

It’s quite an honour to be among the 6 films selected for festival screening, since they must get on the order of ~100 applicants. If Myra wins, it would be oddly fitting: a wildlife film straight out of a park that moonlights as a real Hollywood set.

You can watch “Hen’s Quest” here.

The best parts? I love the music and Myra’s cinematography. I contributed writing (including the title!) and did the artwork; Brian McGirr turned my map drawing into a fantastic animation. Good luck, Myra!

To save trees, major rethink is needed

When you stop to think about it, few things are weirder than a tree. Like us, they’re largish organisms made up of many cells, each with a central nucleus – but we have little else in common. Plants diverged from our early ancestors well before there was anything bigger than a single cell around. They split from the animal lineage even before fungi, which leads to a shocking conclusion. That spot of mould in the vegetable drawer? It’s more closely related to you than the plants upon which you both depend.

Small wonder, then, that plants don’t live and die by the same rules as animals – but this could have dire implications. That’s the message of a new study by Jonathan Davies of McGill University, published in PLoS Biology. Davies and his international collaborators have shown that the factors causing extinction in plants are entirely unexpected, and the upshot is that the current IUCN Red List criteria for listing endangered species – which are based on animal studies – might be useless when it comes to plants.

Davies and his team used the latest the comprehensive Red List data for all flowering plant species in two locations: the United Kingdom and the South African Cape. The Cape is a biodiversity hotspot with thousands of endemic species: plants that evolved there, and that can be found nowhere else. The UK flora, in contrast, is made up of species from other regions that moved in after the retreat of Pleistocene glaciers.

Previous work has shown that among mammals, we are most likely to lose species with large body sizes and long generation times – giant pandas and elephants are classic examples. But according to the new analysis, plants break the mold. Davies and coauthors found that the kinds of plants most at risk in the UK are different from those at risk of extinction in the Cape, indicating that basic traits like size have nothing to do with it. Using a detailed evolutionary history of the Cape species, the team also found evidence that extinction risk in plants is tightly linked to mode of speciation: the Cape species most at risk tend to be ones from the younger, rapidly-evolving lineages.

This implies that in plants, extinction is pruning the tips of the evolutionary tree. The authors suggest an explanation: unlike animals, new plant species tend to arise from small isolated populations that are at the extremes of a much larger ancestral range. Thus, a new plant starts off with a limited distribution, and because range size is an important criteria for Red List risk, it is also highly vulnerable.

The team’s analysis of anthropogenic factors turned up an additional surprise. For the Cape flora, human-induced habitat changes such as urbanization and agriculture cannot explain extinction risk of local plants. In other words, there is no simple geographic correspondence between human activity and plant decline. As the authors put it, places like the South African Cape might therefore be both “cradles and graveyards of diversity”, regardless of human activities.

This study suggests that a major strategy revision is in order if we want to conserve the world’s plants – a group that we all depend upon for oxygen and energy. More generally, risk criteria for one taxonomic group cannot necessarily be applied to another, since the pathways to rarity may be as foreign as the species themselves.

Further Reading

Davies, J. T. et al. 2011. PLoS Biology: 9(5): e1000620.

Cuttlefish strike a pose for 3D camouflage

In the game of hide and seek, cuttlefish have the upper hand. These chameleons of the sea are astonishingly good at disappearing: they can instantaneously change the colour of their skin to blend in with the background, matching even the finicky details like the pattern of coloured rocks on the ocean floor.

Divers have long known that cuttlefish are masters of the 3D camouflage game, too, and new research from the Wood’s Hole Oceanographic Institute has revealed how they do it.

Alexandra Barbosa, a graduate student, and Dr. Roger Hanlon were interested in the way cuttlefish strike a pose when trying to hide. After encountering a predator, these octopus-like animals will flee among the corals, rocks and algae, and freeze with their arms contorted into shapes that mimic nearby objects – a feat made all the more impressive by the fact that cuttlefish arms can bend in any direction. Some birds and insects are also known to camouflage themselves with body posture, but few come close to cuttlefish in shape-shifting flexibility (see photos of cephalopod camouflage in the wild here).

To understand just how they do it, Barbosa and her colleagues in Dr. Hanlon’s lab presented captive cuttlefish with some highly unusual surroundings: jailbird stripes, in black and white. In response, the cuttlefish got theatrical, raising their arms roughly parallel to the angle of the stripes. And when the researchers shifted the angle of the background image, the cuttlefish stretched their arms into a new position in an attempt to stay hidden.

Cuttlefish posing on artificial backgrounds

Cuttlefish posing against different backgrounds. Modified from Barbosa et al. 2011 (see Figure 1).

Intriguingly, not all of the ten individuals tested were able to match the angle perfectly all of the time – but these quirks may not be surprising given that cuttlefish camouflage is so complex. After all, in nature cephalopods get to choose their own hiding places, a decision that might involve several different factors. According to the researchers, camouflaged cuttlefish are even known to gently wave their arms to match the movement of the underwater plants they are trying to mimic.

These results are a clear demonstration that cuttlefish use vision to guide their 3D camouflage, since the study animals matched a flat background image. Moreover, Barbosa and Hanlon have shown that shape-shifting cephalopods can easily handle scenarios that would never occur in the environment where these behaviours evolved, and adjust just as flexibly to this artificial environment as they do in their natural habitats.

Captive experiments like this are just the first step in understanding how cuttlefish use visual cues to hide, and some big questions remain. For instance, little is known about how cuttlefish can detect and match colours so well despite the fact that they are, in effect, colourblind – Hanlon has found that giant Australian cuttlefish can take on the colouration of rocks on the ocean floor even in the middle of the night.

These remarkable split-second decisions about where, and how, to hide might also help us understand something bigger. Strategic camouflage is just one aspect of the surprising intelligence of cuttlefish, which have the largest brains for a given body size of any invertebrate – these animals are also able to learn and communicate with one another at a level that rivals many land-based animals. It will be intriguing to see where hide and seek fits in to the history of cephalopod brain evolution.

Further Reading

Barbosa, A. et al. 2011. Proceedings of the Royal Society B. In press.

How I learned to respect the peahen

Written for the Los Angeles Arboretum.

Meep meep? More like “Honk honk!”

Arboretum regulars will no doubt recognize the call of a startled peahen, but you may not be aware of the clever ways they use it. Not that they try to boast or taunt the enemy, necessarily, but I’m starting to think that the birds at the Arboretum owe a lot to their version of the Road Runner’s call.

How do I know? Some background is in order here: I’m the tall blond woman who has been hanging around the Arboretum morning and night for the past few years, overdressed and hauling a camera, a pair of binoculars, some peanuts and, if I was lucky, a peacock. Working at the park each spring, I often wished I had more time to chat with visitors. But I was preoccupied, and the life of an ornithologist can sometimes feel like that of Wile E. Coyote on a bad day.

For the past four years, I’ve been chasing peafowl across the continent – from Arcadia in February to Winnipeg, Toronto and New York in May and June. Incidentally, the Bronx Zoo is the only place in North America that even comes close to the Arboretum in sheer number of peafowl. Three years into my PhD in biology, and I’ve spent literally hundreds of hours watching these birds.

You may be wondering what got me into this mess.

Continue reading →

Species of serendipity

Like most ideas, this one arrived in the shower. I needed to write a post for this week, but my list of topics was wearing thin and the weather is finally starting to get nice enough to distract me. Sure, I had a few promising ideas lined up, but they all need more time to develop. Plus I had a DVD to watch: a Nature of Things episode on serendipity in science due back at the library. Then it hit me – of course! I’ll watch the episode and then write about that.

Serendipity – supposedly one of the top ten most untranslatable words in the English language – was coined in the 1700s by Horace Walpole as a play on the tile of a Persian fairy tale. The Three Princes of Serendip takes place in Sri Lanka. It follows the adventures of three brothers exiled from the island by their father the king, in hopes that his sons might achieve a more worldly education. In the course of their travels, the princes go on to solve many mysteries – like unintentionally tracking down a lost camel on scant evidence – thanks to their sagacity and a series of lucky accidents.

Since Walpole, the word has taken on a close association with Eureka moments in science, starting with Archimedes’ famous bath. Supposedly, the ancient Greek mathematician solved the problem of measuring the volume of irregular objects after noticing how his own body displaced water in the tub.

Scientists have taken a great interest in tracking serendipity, perhaps because it seems to play a role in research success. Wikipedia has an extensive list of celebrated examples, from Viagra to chocolate chip cookies. Many have looked for ways to encourage this kind of scholarly luck. For instance, after his Nobel prize winning work on viruses, the molecular biologist Max Delbrück is perhaps best known for coming up with the principle of limited sloppiness: researchers should be careless enough that unexpected things can happen, but not so sloppy that they can’t reproduce them when they do. Alexander Fleming had this advantage when he discovered penicillin. He first noticed its antibiotic effects in a stack of dirty culture dishes that he hadn’t bothered to clean before leaving for summer vacation.

So how do people study something that is by definition rare and unusual? Psychology Today has summed up some of the latest research on luck, most of it based on surveys of people who claim to be especially serendipitous1. Not surprisingly, they are more competent, confident and willing to take risks than the rest of us. They are also more extroverted and less neurotic than most. Being born in the summer apparently helps as well – especially May.

Other advice might be more practical.

Continue reading →