Backpedalling on backwards evolution

In a recent post I wrote about irreversible colour changes in morning glory flowers, and how this was promoted as evidence that evolution does not work in reverse1. This is called Dollo’s Law, after the 19th century Belgian paleontologist Louis Dollo. He spent most of his life digging up and reconstructing Iguanodons, but his name lives on in our concept of evolutionary trees. In linguistics, for example, the “stochastic Dollo” model refers to the scenario where words can only arise once in a family of languages2.

Louis Dollo supervising the reconstruction of an Iguanodon

Louis Dollo supervising the reconstruction of an Iguanodon. From Wikimedia Commons.

And the reason Dollo’s name is forever tied to the idea of history not repeating? He wrote that “an organism is unable to return, even partially, to a previous stage already realized in the ranks of its ancestors.”3

Frogs might prove Dollo wrong. A new study by John Wiens, a herpetologist at Stony Brook University, proves that a South American frog re-evolved the long lost bottom teeth of its ancestors, after going more than 200 million years without them4.

Guenther’s marsupial frog lives in the tropical forests of Colombia and Ecuador. It is the only frog we know of among thousands of species with true teeth in its lower jaw. Nearly all frogs have teeth, but only on the upper mandible. They use their single set for grasping prey items that they swallow whole, rather than chewing. The closest amphibian relatives to frogs, salamanders and worm-like caecilians, have maintained upper and lower teeth. This means that somewhere along the line, early frogs lost their bottom set.

As the odd one out, Guenther’s marsupial frog was originally placed in its own family within the taxonomic order Anura. But early studies of tadpole development and immunological proteins suggested that something was off5. In some ways, the marsupial frog was similar to typical tree frogs in the family Hylidae.

John Wiens’ latest results provide a more comprehensive picture of the early amphibian family tree than ever before. He compiled genetic data from 170 species of frogs, salamanders and caecilians. The new phylogeny firmly places Guenther’s marsupial frog in the family Hemiphractidae, and, by calibrating the new tree with evidence from the fossil record, Wiens can pin down the timing of events in amphibian history. His results show that frogs evolved from a salamander-like ancestor and lost their bottom teeth over 230 million years ago – and Guenther’s marsupial frog regained them quite recently, within the last 17 million years.

Hoatzin chick

The marsupial frog is just the latest in a long line of putative exceptions to Dollo’s Law. Others include fossil ammonites that have lost and regained the coiled form of their shells several times3, and modern slipper limpets that regained the coiled shells of their snail-like ancestors6. Some lizards have re-evolved long lost fingers and toes7. The strange bird known as the hoatzin, which has claws on its wings that are used for climbing until its wings are fully developed for flight, might have re-evolved this feature from its dinosaur ancestry. These examples have led some authors to argue that Dollo’s Law has outlived its usefulness8. Should it go the way of chewing teeth in hens and (most) frogs?

Continue reading →

Wherefore the mustache?

Ears, palms, toes, neck, and nose. In that order.

These are the grossest places for humans to have hair, according to Queen’s students. Ok, there were a few others that I didn’t mention. The upper lip, however, did not receive a single vote.

Last fall a number of men in the biology department grew competitive mustaches for “Movember” prostate cancer research fundraising. This required mass beard shaving on the first of November. Martin Mallet, known for his thick coat of fur, emphatic hand gestures and all-around intensity, suddenly transformed into a meek imposter. For the first time Martin had no probing questions for the speaker at the EEB seminar. I can’t help but wonder: if he did, would anyone have noticed?

I started to recognize Martin again when the hair on his upper lip attained visibility. Other men of Movember fared less well. It can’t be a good thing when the people who work in the same office as you don’t even notice your new, mustachioed face.

But what, if anything, is it for? My experience suggests that human facial hair serves as a male status signal. Is this why we evolved mustaches in the first place?

Inca Tern

Why do mustaches evolve? Inca tern, from Wikimedia Commons.

In class the other week we discussed Stephen Jay Gould and the trouble with adaptationism. Gould famously criticized the proliferation of sloppy adaptive reasoning in his 1979 paper “The Spandrels of San Marco and the Panglossian Paradigm1. He took aim at scientists who apply adaptive “story-telling” to nearly anything – from the colour of our skin to the size of our noses – in an unverifiable, unfalsifiable way.

It can be easy to jump on the adaptationist bandwagon, since these stories are often quite plausible. This may have been especially true when “Spandrels” was written, due to the rise of some revolutionary ideas about how to apply evolutionary biology to the study of social behaviour. There was plenty of new research to be done. Of course, many of the people doing this research disagreed with Gould’s characterization2. At its worst, adaptationist thinking might lead to some bad science, especially when it comes to human behaviour (where confounds are especially hard to control). But speculation is a necessary part of the scientific method, and adaptive reasoning can be a good place to start.

It is worth noting that Gould’s paper has been enormously influential. “Spandrels” has been cited well over 3500 times. I’m still waiting on citation number 3 for my Master’s research.

And yet, the response of the research community to the “Spandrels” critique has largely been, “That’s well said, but let’s get back to our field work.”2 In that spirit, consider the mustache. Can we speculate about it in a reasonable way, avoiding the big adaptationist pitfalls?

First of all, is this question worth asking?

Continue reading →

Super indelible flower colours

How do you fire a pollinator?

That was the question in last week’s Ecology, Evolution and Behaviour departmental seminar. The speaker was James Thomson, an evolutionary ecologist from the University of Toronto who specializes in the interactions between plants and their animal pollinators. His research shows that nectar-addled hummingbirds are like corporate ladder climbers. Bees, on the other hand, are always getting canned.

Pollination syndromes have been a major focus of Thomson’s work1. These are not garden ailments. “Syndrome” here refers to a suite of traits that tend to be found together, in this case because they help a plant attract a certain kind of pollinator.

Bird-pollinated flowers tend to be red and tube-shaped, producing lots of nectar but relatively little scent. Birds have sharp vision, and do not depend much on their sense of smell. Honeysuckle is an example of this type of flower – or anything that looks like a hummingbird feeder. Bee-pollinated flowers come in shades of yellow, blue, and purple, because bees cannot see the colour red. Familiar examples are sunflowers, snapdragons and wild pansies. These often have petals modified into special bee landing platforms. Flowers that specialize on birds and bees are common, but there are many other pollination syndromes. If a flower is orange-brown and smells like rot, it probably depends on carrion flies. Mammal-pollinated flowers often smell fruity, like synthetic grape flavouring.

In his talk, James Thomson reviewed a decade’s worth of work on beardtongue flowers from the genus Penstemon2. In 2007, Thomson and his collaborators used genetic analyses to build the evolutionary tree for close to 200 of the species in this group3. When flower traits were mapped on to the Penstemon family tree, interesting patterns were revealed.

First, the bird and bee pollinated species were distributed broadly throughout, implying frequent transitions between these two syndromes in the history of the Penstemon group. Like an evolutionary magnet, pollination by one type of animal or another exerts a strong pull on multiple flower traits in concert. Evolving species are drawn rapidly towards a new form, so you almost never find intermediates.

This lability or changeable nature of floral traits was not much of a surprise, but the Penstemon tree also suggested something incredible. Floral evolution was directional.

Continue reading →

Science fictions

Fakery is not just for Hollywood films anymore.

Nature documentaries are full of it, from elegant narratives to some downright dirty tricks. This tradition goes back a long way: the myth that lemmings commit mass suicide to save their brethren from overpopulation was spread widely as as result of the 1958 Disney film White Wilderness. This is not trivial. The film won an Oscar for Best Documentary. The lemming story made it as far as a philosophy course I took in university (Science and Society PHIL203), where the instructor used it as an example of why we should doubt evolutionary explanations of human behaviour. The myth just won’t die, even though CBC exposed the lemming scam back in 19821. Journalists on The Fifth Estate proved that the mass suicide scene was actually filmed in downtown Calgary, not in the Arctic as Disney had claimed. The Disney crew used a rotating platform to push captive lemmings into the Bow River.

More recently, the BBC has come under fire for using captive animals to film some of the scenes in the Blue Planet series1. This seems justifiable to me, but some truly ugly practices have also been exposed, like baiting corpses with M&Ms to get footage for an IMAX documentary on wolves2.

Continue reading →

Field biology goes to Hollywood

One of the weirder things about my field site is that it is also a Hollywood set. A number of movies, TV shows and commercials have been filmed at the LA Arboretum, going back to Tarzan Escapes in the 1930s.

The Arboretum had a regular appearance in the popular 1970s show Fantasy Island. In the opening credits, a midget rings the bell in the Queen Anne Cottage. This is a historic building on the Arboretum grounds that was built in the by the same wealthy California businessman who started the peafowl population in the area.

You can catch the Arboretum in many other films, since it provides a convenient stand in for the jungle a short drive away from downtown Los Angeles. Examples: The Lord of the Flies, Anaconda, The Lost World, Congo, Terminator 2, The African Queen, and too many campy horror flicks to count (Attack of the Giant Leeches?).

Several things were filmed during my three seasons there, leading me to realize that making a movie is a lot like doing field biology. Here’s how:

1. The hours. Field biologists often have to keep the same hours as their study species, working for as long as the animals are active. For some ornithologists, this can mean starting at 4 am. We were lucky with peafowl. They are late risers, coming down from their roosts around 7-8 am. They also tend to take a long siesta in the middle of the day. This meant that we had to work two shifts, coming in for several hours in the morning and returning after lunch until sunset. It made for some long days.

Film crews also seem to work long hours based on the amount of light, since our schedules would often coincide.

2. Tedium and futility. Most of the time spent watching animal behaviour is watching them do very little. Here’s an example: we saw about 20 mating events in 2010, in 500 man-hours of observation time. That’s over 24 hours of sitting quietly for each copulation.

Catching the beasts can be a little bit more active, but you still feel completely useless 90% of the time. Your main activities include: waiting for the animals to show up, looking for the ones you haven’t caught yet, waiting around for your traps to work, and worrying about all the reasons why they aren’t.

A lot of jobs in Hollywood might not be so far off. When AT&T filmed a commercial at the Arboretum last year, we met a guy whose sole responsibility was to keep the peacocks away from the set. His boss gave him a bag of bird seed. It was the cusp of the breeding season, and the crew had decided to place their set right in the middle of one particularly dedicated male’s territory. The poor guy was literally playing tag with that bird all day.

3. Costumes. Important in Hollywood, but also useful when trying to catch birds. After a few weeks in the field, most tend to settle in to a uniform, wearing the same thing nearly every day. If it works and you’ll just be getting dirty again tomorrow, why change?

Field clothes

Waterproof jackets come in handy when catching large birds. From left: Will Roberts, Myra Burrell and Roz Dakin. Photo by Bonny Chan.

Continue reading →

Evolutionary rescue

Can evolution save us from the brink of collapse?

Andy Gonzalez thinks so. Gonzalez, an ecologist from McGill University, gave an entertaining seminar to the department last Thursday on the subject. His research group works on the causes and consequences of biodiversity loss, using mathematical models and controlled experiments to investigate how environmental change might affect populations.

Gonzalez teamed up with McGill’s Graham Bell, who is known for using simple systems like yeast and algae to tinker with the evolutionary process through experimental evolution. Gonzalez describes their third collaborator on this project as “painful to work with, but once things were up and running [he was] amazing.” He was, in fact, a robot.

Continue reading →

What should Stephen Harper know about biology?

I’m teaching again this semester, this time in Bob Montgomerie’s fourth-year course on the history and philosophy of biology. My job is to moderate group discussions and seminars in the tutorials. It will be a lot of work, since tutorials happen every week, but I’m excited at the prospect of using our debate as fuel for this blog.

I started by asking the class to answer three questions in an anonymous survey. First, I wanted them to tell me the most surprising thing they had recently learned about science.

My example of this was the nocebo effect. it’s the opposite of the placebo effect, with a bit of voodoo-witchcraft thrown in: apparently just believing in a negative outcome can be bad for your health. What I found surprising about it initially were the spooky anecdotal accounts of people diagnosed with terminal illness, and then dying within a few months just as the doctors predicted – only to have pathologists later realize that the original diagnosis was in error. Can we think ourselves to death?

But maybe this was a bad example. In general, the power of negative thinking isn’t all that surprising. Why shouldn’t there be a flip side of the coin for the placebo effect? After all, the negative effects of stress and anxiety on health are well-documented by the medical community. For example, this Washington Post article describes a study on blood thinning drugs where doctors showed that just by giving patients a warning about gastrointestinal side effects, you can make it much more likely that they will experience those negative symptoms. Other documented nocebo effects in the Skeptic’s Dictionary range from headaches to allergic reactions. Again, the power of thought to affect us via our own immune systems is perhaps not so surprising.

Voodoo may have lost its magic too: according to this article from Salon, there is some debate as to whether examples of death by curse in tribal societies are really due to starvation and dehydration, since feeding the doomed individual is often seen as a waste of scarce resources. And of course, the medical anecdotes of death by false diagnosis are good stories, but probably not much more than eerie and highly memorable coincidences.

What do the students find hard to believe? Out of 28 responses, 4 had to do with the paradoxical nature of modern physics. There was 1 response on lemmings that was certainly hard to believe, because it was just plain wrong (more on that later, but lemmings do not jump off of cliffs in a form of altruistic mass suicide. That is a myth). The majority, at 14, were on marvels of adaptive evolution (e.g., the complexity of the brain, venomous mammals like the platypus, bowerbirds, examples of rapid evolution).

This is proof that majoring in biology does not diminish the sense of wonder we have about living things. If anything, it probably enhances it. Here are two student responses that sum it up nicely: the “diversity that surrounds us” and “just how much there is out there to learn”. It may be the hardest thing about biology to really wrap your mind around, but it sure is fun to try.

The second question: What should Stephen Harper know about biology?

The most popular category here was the environment, with 13 students listing principles of ecology and environmental science that Harper could use. After that, 4 wanted Harper to have a basic grasp of evolution and natural selection, especially given the strange opinions of his science minister Gary Goodyear. There were 2 shameless requests for more research funding. Sadly, 2 left this one blank – hopefully not because they think Harper doesn’t need any biology. At the other extreme, 1 complained that there is a lot Harper should know about “any matter really”. One student wants him to have “a dangerous idea like Charles Darwin”.

I would tell Stephen Harper that Taq polymerase comes from Yellowstone National Park. Everyone should know this one – I’m sure I learned it during undergraduate, but forgot, only to be reminded of it again recently.

Here’s the story: Taq polymerase is a chemical we use to study DNA. A workhorse of the modern genetics lab, this enzyme makes it possible to turn a minuscule amount of DNA into a much larger sample by rapidly copying the molecules at high temperatures in the polymerase chain reaction (PCR). Countless techniques are made possible as a result: forensic DNA fingerprinting, diagnosis of genetic diseases, unraveling gene functions, sequencing whole genomes, and filling in the branches on the tree of life that describes how all living things are related to one another.

Taq polymerase works at high temperatures because it comes from Thermus aquaticus, a heat-loving bacteria. Up until the 1960s, the temperature threshold for life was thought to be around 73 degrees Celsius (which is the limit for photosynthetic bacteria). However, in 1967 Thomas D. Brock and Hudson Freeze reported finding bacteria that could withstand temperatures a lot higher than that in the hot springs of Yellowstone. This was revolutionary. Years later, when people were working out the chemical procedures necessary for DNA analysis, it was knowledge of the earlier Yellowstone discovery that made efficient DNA copying at high temperatures possible.

I also asked the students what they hoped to get out of the course. Only 1 claimed a good mark, which was surprising for an anonymous survey. Some emphasized novelty: to learn “something new in biology for once”, “something stimulating and eyebrow raising” and “ideas never thought of before”. Others hope to learn some personal and biographical details of the iconic figures in science: “what inspired them” and “what was going through their heads when their ideas were opposing the popular belief of their time”. I hope I can learn from this group about what goes on in the heads of students and the public in Canada.

Masters of illusion

It can be easy to see intelligence in the animals we spend a lot of time with. Everyone has their pet example, one of the most common being dogs who can anticipate the precise time of their owners’ return. But what does this really say about the mental life of dogs? Some birds are capable of even more impressive mental stunts – only they often go unnoticed in the wild. Two recent field studies in Africa and Australia provide a nice illustration. The results challenge our notion of limited animal intelligence, but as we will see, the way we interpret them might say more about our own minds than it does about the birds.

Fork-tailed drongos are masters of deception. These small, glossy black birds from southern Africa are known for their ability to mimic the calls of other bird species – much like the mockingbirds found throughout the US and parts of southern Canada. Most of the time, drongos forage alone hunting insects, but occasionally they get other animals to do the hard work for them. Drongos will follow groups of meerkats and pied-babblers – mammals and birds known for their highly social lifestyles – and steal their food, a process known as kleptoparasitism. It might not be a complete loss for the victims, either. Drongo thieves give plenty of alarm calls along the way, and these may help the meerkat and babbler groups avoid predation1.

Perhaps not surprising for an accomplished mimic, the fork-tailed drongo has a diverse alarm call repertoire that includes its own unique warning “chink” as well as the calls of several other bird species. On the savannahs of the Kalahari Desert, birdwatchers noticed that drongos often seem to use these mimicked calls during kleptoparasitism, swooping in to steal food from pied-babblers immediately after sounding a false alarm1. For Tom Flower at the University of Cambridge, this was fascinating anecdotal evidence, so he set out to test whether these alarm calls are used by the drongos in a deceptive way2.

The first thing Flower needed to do was eliminate the possibility that the drongo false alarms are coincidental. If the drongos are truly deceptive, the calls should only occur when the birds are attempting to steal food. Flower also had to establish that the drongos sound the same, regardless of whether they are using their alarm calls in an honest or deceptive context. Finally, he had to show that the meerkats and babblers respond similarly in both cases.

Fork-tailed drongo

Fork-tailed drongo.

Continue reading →

Deep archives: Sex “pests” get more practice

Juvenile male peafowl practice their displays

Having finished my field work this year, I thought I’d keep up with this blog by writing about interesting things that other people have seen animals do.

To start: this BBC science news report on the discovery of a “sex pest” seal that attempted to mate with a penguin, brought to my attention by Rob Ewart (the original paper can be found here but you will need a subscription to the journal to read the whole thing).

Apart from the entertainment factor – the abstract to the scientific paper concludes, “we report a case of interspecific sexual harassment bridging the rank of vertebrate class” – there are a few interesting issues here. The first being, why on earth would the seal do this? The authors provide a few possible answers. Apparently these fur seals sometimes eat king penguins, so perhaps by some strange mis-wiring, predatory arousal translated into sexual arousal in this case. Alternatively, the seal may have been too young to find a real mate, desperation leading it astray. Or, intriguingly, the young seal could have been play mating, a form of practice for the real thing later on.

The second issue: why on earth would a scientific journal publish something like this? Is it really that unusual for hormonally-charged animals to make the occasional mistake? This year alone I witnessed a peacock give chase to a human female (with the characteristic “hoot” of excitement that accompanies all mating attempts), and I’ve seen several peacocks attempt the same with guinea fowl and squirrels. All of these events happened with males that were displaying intently but that hadn’t had any peahen visitors in quite some time. Is this paper really such a novel finding, or are the authors just as desperate as the seal?

On reflection, it’s probably important to document these unusual behaviours somewhere, since it would be an interesting outcome if they turned out not to be mistakes after all. Young peacocks, for example, will frequently display their undeveloped train feathers to each other (pictured above). This male-male display may seem futile, but I wouldn’t be surprised if the kind of dancing skill required later in life demands some practice. Similarly, in Costa Rica I remember hearing juvenile long-tailed manakins displaying long after the real mating season had ended, no doubt honing their skills for next year. There is even some evidence that the reason male manakins pair up for their co-ordinated display dances, even though only the dominant member of the pair will get to mate, is for the practice.

The full citation for the seal paper:

De Bruyn PJN et al. 2008 Journal of Ethology 26:295-297.

And two on long-tailed manakin displays:

Trainer et al. 2002 Behavioral Ecology 13: 65-69.

Trainer and McDonald 1995 Behavioral Ecology and Sociobiology 37:249-254.

Deep archives: Numbers, gathered

With our first two weeks of observations behind us, I thought I’d write about what we’ve gathered so far.

Fifteen copulations, all involving unstickered males: 6 for male 30, 5 for male 42, 3 for male 31, and 1 for male 38 (this last one is most triumphant since 38 is a male with stickers on the backs of his eyespots!). The remaining 16 males haven’t achieved anything yet, but that sort of skew (with the majority of males missing out on mating entirely) is normal for peafowl.

Two males display to a feeding peahen

Two males display to an uninterested female, while she feeds on some seeds provided by park visitors. Feeding the peafowl is not allowed.

Twelve attempts to touch the birds: okay, we haven’t really been counting (and if we had, this would probably outnumber the copulations). On a daily basis we scold people who try to touch and stroke the feathers of displaying peacocks. The offending demographic is about half children, half grown women; I feel a little bad about scolding the children, but grownups should know better.

Three soundbites: the most ridiculous one from a lady looking at a peacock with his train unfurled, overheard by Rob: “Now look at that and tell me there isn’t a creator!” Irreducibly beautiful indeed. The most astute comments have come from children: a couple of them exclaimed in surprise that the peacock feathers looked just like eyes, and today one boy asked, referring to the peacock’s crest feathers, “Why does he have a mohawk?”

One attempt by a juvenile male to mate with another juvenile male, and one attempt by an adult male to mate with a human female (not me). I think the former was a case of the juvenile males being eager to practice on anything, but I’m not sure about the latter.

And sadly, no Easter treats: yesterday was the “Great Easter Egg Hunt” at the Arboretum, and even though we thought we’d have an advantage over all the children since we’d be arriving when the treats were still being hidden, we failed to turn up anything. We also had to cut the morning short since all the commotion was impinging on lek activities.

As for Penelope, she’s staying in for now. Since there are real females about, I think a better use of our time is to get a handle on their preferences; I’ll bring Penelope out for round two in about a week or so.

Deep archives: The joys (and pains) of number-gathering

One of the best things about biology is that it means you might get to work outdoors. This is especially wonderful when it involves heading somewhere warm, or at least somewhere warmer than home.

But field work in evolutionary biology is fraught with difficulties; it’s not all “binoculars and gorillas” as David Quammen has said (he’s one of my favourite nonfiction writers, and well worth looking into if you haven’t heard of him already). Field work can be lonely and uncomfortable, often horribly so, and is almost always tedious.

Field work has taught me what it feels like to sleep in a house where the scorpions outnumber the people. It has taught me the psychological terror of infestation with tiny biting mites that give you new welts daily, when other people working in the same environment receive not a single bite. It has taught me that I’m willing to wear my pants tucked into my socks, and keep them that way even if it includes a stop at the grocery store on the way home from work. But it has also taught me that most bugs really aren’t anything to be afraid of, and that not having to worry about what other people think can be a luxury.

As for the tedium, coming to terms with that is another thing entirely. As Quammen puts it, raw number-gathering can be dull even for the biologist with the “soul of a mathematician”, and the risk of boredom is one that will certainly increase with time. Absence of scorpions, centipedes, and tropical diseases in California aside, I still have to contend with the painful task of sitting still for hours and watching, even when the birds aren’t doing anything. I realize now that this kind of prolonged tedium is not unique to field work (perhaps it’s a defining characteristic of graduate research in general).

During the more inactive lek watches, I get myself through by thinking about what I’m going to eat for lunch, write in my next letter home, or do when I get back to Kingston. My friend Mike has described his endless hours of microscopy (for his Master’s research) as intellectually unstimulating yet strangely rewarding. I find the same is true of number-gathering in the field. As boring as it can be, I enjoy the fact that it gives me a chance think about the things I’m looking forward to in the future as well as reflect on those that I’m lucky to have now.

There’s one final difficulty – this is one that I fear more than centipedes, and still haven’t figured out how to reconcile. I’ll let Quammen describe it since he does it so well:

Besides tedium and reductionism, snakebite and dysentary, one other danger faces the biological fieldworker. This one is so large and scary, so terrifyingly amorphous, that it’s best described in the negative: lack of validity. Are you really measuring what you think you’re measuring? Are you really counting what you think you’re counting? Are you really therefore proving what you claim to be proving? Or possibly not? Maybe you’re rowing like hell but your oars aren’t in the water.

Quantification must be meaningful as well as precise, and the assumptions by which number are linked to biological realities must be correct. If so, you have not only precision but validity. If not, you’re wasting your time. Does the number of rings in a tree trunk really represent years of age? In most cases, yes. Does the number of wolf sightings in Glacier National Park really represent the current wolf population in that area? Possibly. Does the number of UFO stories in The National Enquirer, this year compared with last year, really represent the trend in visits by alien spacecraft? Uh, maybe not. Mathematized meaning, like any other kind, can be illusory.

I think I’ll make it mandatory reading for future field assistants.

David Quammen. 2000. “Certainty and Doubt in Baja” in The boilerplate rhino: Nature in the eye of the beholder. Simon & Schuster.