#elxn42 Burnaby debate

My friend Terry Beech is running for parliament in the Burnaby North-Seymour riding. Charlie and I are helping with his campaign – Charlie is his campaign manager, and I’m part of his team of volunteers. It’s shaping up to be an exciting three-way race between Terry (the Liberal), Mike Little (Conservative), and Carol Baird-Ellan (NDP). The press has highlighted Burnaby North-Seymour as a “riding to watch”. Go Terry!

One of the highlights was attending a local candidates debate last week.

Continue reading →

Elections are like peacocks

Both are loud, and both cause colourful flashy things to pop up on lawns everywhere. And much like elections, the peacock’s train is a costly endeavour. The species might be better off in terms of survival and abundance if they could just do away with those feathers. In terms of sheer waste, they remind me of the Green party pamphlets in our apartment building entrance way. They were stuffed blindly into all of the available mailboxes – which happen to be for street level businesses on our downtown block, not residents. Nice.

Peacocks and elections are both supposed to experience strong positive feedback effects. In politics, momentum can lead to rapid climbs in popularity. Sexual selection can be similar: as Ronald A. Fisher pointed out, exaggerated male traits can potentially evolve through a process of positive feedback. If enough females prefer the particular male trait initially, and the next generation inherits both the female preference and the exaggerated male trait, it can kick-start a runaway process of sexual selection to extremes.

Despite claims to the contrary, we don’t actually know whether Fisher’s runaway process contributed to peacock evolution. But it may be reasonable to assume that it played at least some role: positive feedback should set up easily so long as mate choice is not very costly for females2.

Thinking about peacocks gave me an insight that may have cured my allergy to all things political, at least temporarily. Not that I don’t care about the election – I do – but I can’t get over my frustration at the kinds of things that count as good arguments in the political sphere. Here’s an example: I’d like to learn more about the Green party, but they seem to support a whole lot of pseudoscientific nonsense. Apparently their health care platform includes homeopathy and various other forms of alternative medical quackery. How can we be sure they won’t apply the same less-than-rational approach to the environment? If only there could be “one true party”, I thought after the leaders’ debate – a notion that, briefly, made me wonder whether I might be a closet fascist.

This doubt came up again when I was reading an article in this week’s Nature about the effect of social media on research priorities. It focused on the controversial and totally unproven “liberation procedure” for MS – extremely popular in Canada but, oddly enough, nowhere else1. The article mentioned that Michael Ignatieff has stated his support for clinical trials of the treatment, despite the recommendation by a panel of CIHR experts that a clinical trial would be premature without further evidence from observational studies1. The authors of the Nature article – a group of doctors and medical researchers in Canada – ended up somewhere close to Ignatieff’s position nonetheless. They concluded that the benefits of a full-blown experimental trial might outweigh the costs if thousands of social media-influenced patients are travelling outside of the country to receive private treatment anyway, “exposing themselves to the risks and costs”1. In other words, popularity is an important – and rational – consideration when it comes to medical science.

I have two things to offer for election day. First, there is a good summary of where the major parties stand on science and research funding here. Some are a lot more rational than others.

On to the peacocks. Democratic elections, like sexually selected traits, are communal illusions. Money is another example. The more you accept them, the more you believe in them, the better they work.

References

  1. Chafe, R. et al. 2011. Nature 472: 410-411.
  2. Lande, R. 1981. PNAS 78: 3721-3725.

Employed science

It’s when applied science gives back, contributing a piece to the basic research puzzle.

Jaded grad students like me get a warm fuzzy feeling when we hear about people reaping unexpected benefits – economic or social – from the results of pure science. Last night I was reminded that this can work in the opposite direction.

Matthew Mecklenburg and Chris Regan, two physicists from UCLA with interests in quantum theory and its applications for sustainable energy, wanted to design a better transistor. Instead, they discovered something fundamental about the structure of the universe1. Hidden from our eyes and our finest instruments, the space that surrounds us might be more like a chessboard than a continuous expanse.

Mecklenburg, a grad student, was investigating graphene as a potential material to make more efficient transistors – the little bits of silicon that allow computers and essentially all modern electronic devices to function. He needed some precise measurements of the way light interacts with graphene at the nanoscale, to assess feasibility of the new design. These experiments gave Mecklenburg a quantitative picture of the way electrons hop around in the lattice of carbon atoms in graphene. And that’s when the chessboard struck.

Mecklenburg and Regan realized that the hopping behaviour of electrons in graphene was formally equivalent to what happens when an electron flips its “spin” – a theoretical concept that has remained an enigma since it was described in the early 20th century.

Continue reading →

What should Stephen Harper know about biology?

I’m teaching again this semester, this time in Bob Montgomerie’s fourth-year course on the history and philosophy of biology. My job is to moderate group discussions and seminars in the tutorials. It will be a lot of work, since tutorials happen every week, but I’m excited at the prospect of using our debate as fuel for this blog.

I started by asking the class to answer three questions in an anonymous survey. First, I wanted them to tell me the most surprising thing they had recently learned about science.

My example of this was the nocebo effect. it’s the opposite of the placebo effect, with a bit of voodoo-witchcraft thrown in: apparently just believing in a negative outcome can be bad for your health. What I found surprising about it initially were the spooky anecdotal accounts of people diagnosed with terminal illness, and then dying within a few months just as the doctors predicted – only to have pathologists later realize that the original diagnosis was in error. Can we think ourselves to death?

But maybe this was a bad example. In general, the power of negative thinking isn’t all that surprising. Why shouldn’t there be a flip side of the coin for the placebo effect? After all, the negative effects of stress and anxiety on health are well-documented by the medical community. For example, this Washington Post article describes a study on blood thinning drugs where doctors showed that just by giving patients a warning about gastrointestinal side effects, you can make it much more likely that they will experience those negative symptoms. Other documented nocebo effects in the Skeptic’s Dictionary range from headaches to allergic reactions. Again, the power of thought to affect us via our own immune systems is perhaps not so surprising.

Voodoo may have lost its magic too: according to this article from Salon, there is some debate as to whether examples of death by curse in tribal societies are really due to starvation and dehydration, since feeding the doomed individual is often seen as a waste of scarce resources. And of course, the medical anecdotes of death by false diagnosis are good stories, but probably not much more than eerie and highly memorable coincidences.

What do the students find hard to believe? Out of 28 responses, 4 had to do with the paradoxical nature of modern physics. There was 1 response on lemmings that was certainly hard to believe, because it was just plain wrong (more on that later, but lemmings do not jump off of cliffs in a form of altruistic mass suicide. That is a myth). The majority, at 14, were on marvels of adaptive evolution (e.g., the complexity of the brain, venomous mammals like the platypus, bowerbirds, examples of rapid evolution).

This is proof that majoring in biology does not diminish the sense of wonder we have about living things. If anything, it probably enhances it. Here are two student responses that sum it up nicely: the “diversity that surrounds us” and “just how much there is out there to learn”. It may be the hardest thing about biology to really wrap your mind around, but it sure is fun to try.

The second question: What should Stephen Harper know about biology?

The most popular category here was the environment, with 13 students listing principles of ecology and environmental science that Harper could use. After that, 4 wanted Harper to have a basic grasp of evolution and natural selection, especially given the strange opinions of his science minister Gary Goodyear. There were 2 shameless requests for more research funding. Sadly, 2 left this one blank – hopefully not because they think Harper doesn’t need any biology. At the other extreme, 1 complained that there is a lot Harper should know about “any matter really”. One student wants him to have “a dangerous idea like Charles Darwin”.

I would tell Stephen Harper that Taq polymerase comes from Yellowstone National Park. Everyone should know this one – I’m sure I learned it during undergraduate, but forgot, only to be reminded of it again recently.

Here’s the story: Taq polymerase is a chemical we use to study DNA. A workhorse of the modern genetics lab, this enzyme makes it possible to turn a minuscule amount of DNA into a much larger sample by rapidly copying the molecules at high temperatures in the polymerase chain reaction (PCR). Countless techniques are made possible as a result: forensic DNA fingerprinting, diagnosis of genetic diseases, unraveling gene functions, sequencing whole genomes, and filling in the branches on the tree of life that describes how all living things are related to one another.

Taq polymerase works at high temperatures because it comes from Thermus aquaticus, a heat-loving bacteria. Up until the 1960s, the temperature threshold for life was thought to be around 73 degrees Celsius (which is the limit for photosynthetic bacteria). However, in 1967 Thomas D. Brock and Hudson Freeze reported finding bacteria that could withstand temperatures a lot higher than that in the hot springs of Yellowstone. This was revolutionary. Years later, when people were working out the chemical procedures necessary for DNA analysis, it was knowledge of the earlier Yellowstone discovery that made efficient DNA copying at high temperatures possible.

I also asked the students what they hoped to get out of the course. Only 1 claimed a good mark, which was surprising for an anonymous survey. Some emphasized novelty: to learn “something new in biology for once”, “something stimulating and eyebrow raising” and “ideas never thought of before”. Others hope to learn some personal and biographical details of the iconic figures in science: “what inspired them” and “what was going through their heads when their ideas were opposing the popular belief of their time”. I hope I can learn from this group about what goes on in the heads of students and the public in Canada.