Another reason for eggs

Roman soldiers used them for protein1. In Mexico, men steal them from endangered sea turtles for their supposed effects on virility2. Bird eggs and roe, the ripe ovaries of fish, have a rich balance of proteins, fats and minerals – nutritionally, almost everything a predator needs. The whole point of these things is to feed something for an extended period of time. It’s no wonder eggs are so delicious.

The applications go beyond adding energy to our diets and structure to baked foods. Laying hens also contribute to medicine. Fertilized chicken eggs are used to grow viruses for mass production of vaccines. In 2007, scientists figured out how to genetically engineer hens to incorporate certain cancer-fighting proteins right into their egg whites, in a more efficient way to manufacture drugs that has been dubbed “pharming3.

This morning, enthusiasts have yet another reason to celebrate, since a new study suggests that bird eggs might hold even more promise for medical research.

It has to do with migration, but not the kind you’re used to hearing about with birds. Cellular migration refers to the movement of cells within an organism during growth or embryonic development. For a long time, biologists studying this behaviour focused on the movement of single cells in isolation. In the last decade, however, the focus shifted to cells moving in a large, cohesive group. This collective migration is a fundamental part of gastrulation and neural crest development – two of the necessary steps for turning a blob of cells into a fully formed embryo during development (watch a time lapse video of this process in zebrafish).

Collective cell movement, or epithelial migration, occurs on a grand scale during bird embryo development. Every fertilized egg contains a tiny blastula, the hollow ball of cells that will eventually become a fetus. Early on, the cells of outer blastoderm layer of the ball start to expand across the vitelline membrane that surrounds the egg yolk, in a process known as epiboly. Eventually, the expanding sheet of cells envelops the entire yolk – a requirement for the yolk sustain the embryo during its transformation from a ball of cells into a viable chick.

Bird embryo and yolk

A chicken embryo grows while attached to its yolk, because of epiboly. Modified from drawing by D.G. Mackean.

This around-the-yolk migration happens rapidly, within days. From the perspective of a single cell, it’s a feat that bioengineer Evan Zamir likens to “an ant walking across the earth”4. And we still don’t know exactly how birds do it, with their humongous yolks; so far, most research on epithelial migration has involved other organisms.

Continue reading →

Not when cupid strikes

Raphael's The Triumph of Galatea

“Not when cupid strikes.”

That was Christine Drea’s response at the Animal Behavior meeting last summer. She had just given a talk on her latest study, showing the dramatic effects of hormonal contraception on the way lemurs communicate with the opposite sex1. I was asking her what advice she gives to women about birth control. On the 50th anniversary of the Pill, scientists like Drea were adding to the evidence that we might want to think twice about our widespread use of these drugs. The lemur research suggests that hormonal contraception could be replacing one “problem that has no name” – Betty Friedan’s idea of the dissatisfaction felt by modern women – with another2.

Like many primates, ring-tailed lemurs have a complicated system of signaling to one another through scent. Males are able to detect the sex, fertility and even the identity of a particular female by smell alone3. At first glance, the connection to humans might seem far-fetched, since our noses are pretty poor compared to other mammals. But we are relatively well-endowed when it comes to scent production: humans have more scent glands on the surface of our skin than any other primate4.

We also have some surprising olfactory abilities lurking beneath the surface. The classic example is the T-shirt test. In the 1990s, researchers at the University of Bern in Switzerland gave a group of men T-shirts to take home, with instructions to sleep and sweat in them over the next two nights5. When women were later asked to sort the dirty T-shirts based on pleasantness of smell, they did something surprising. Their rankings came down to genes: the more genetically distinct a man was from a female rater, the more she liked his scent.

Continue reading →