Life imitates [filmmaking] art

Congratulations to Myra Burrell – her peacockumentary has been short-listed for the Animal Behavior Society’s film festival!

Myra, a veteran of the natural history film program at the University of Otago in New Zealand, traveled to California with me in 2010. She helped with peacock field work, capturing more females than anyone thought possible. Somehow, in the meantime, she made a movie about the birds. It’s a short film that gives you an idea about what happens on a peacock lek, from the hen’s point of view.

It’s quite an honour to be among the 6 films selected for festival screening, since they must get on the order of ~100 applicants. If Myra wins, it would be oddly fitting: a wildlife film straight out of a park that moonlights as a real Hollywood set.

You can watch “Hen’s Quest” here.

The best parts? I love the music and Myra’s cinematography. I contributed writing (including the title!) and did the artwork; Brian McGirr turned my map drawing into a fantastic animation. Good luck, Myra!

To save trees, major rethink is needed

When you stop to think about it, few things are weirder than a tree. Like us, they’re largish organisms made up of many cells, each with a central nucleus – but we have little else in common. Plants diverged from our early ancestors well before there was anything bigger than a single cell around. They split from the animal lineage even before fungi, which leads to a shocking conclusion. That spot of mould in the vegetable drawer? It’s more closely related to you than the plants upon which you both depend.

Small wonder, then, that plants don’t live and die by the same rules as animals – but this could have dire implications. That’s the message of a new study by Jonathan Davies of McGill University, published in PLoS Biology. Davies and his international collaborators have shown that the factors causing extinction in plants are entirely unexpected, and the upshot is that the current IUCN Red List criteria for listing endangered species – which are based on animal studies – might be useless when it comes to plants.

Davies and his team used the latest the comprehensive Red List data for all flowering plant species in two locations: the United Kingdom and the South African Cape. The Cape is a biodiversity hotspot with thousands of endemic species: plants that evolved there, and that can be found nowhere else. The UK flora, in contrast, is made up of species from other regions that moved in after the retreat of Pleistocene glaciers.

Previous work has shown that among mammals, we are most likely to lose species with large body sizes and long generation times – giant pandas and elephants are classic examples. But according to the new analysis, plants break the mold. Davies and coauthors found that the kinds of plants most at risk in the UK are different from those at risk of extinction in the Cape, indicating that basic traits like size have nothing to do with it. Using a detailed evolutionary history of the Cape species, the team also found evidence that extinction risk in plants is tightly linked to mode of speciation: the Cape species most at risk tend to be ones from the younger, rapidly-evolving lineages.

This implies that in plants, extinction is pruning the tips of the evolutionary tree. The authors suggest an explanation: unlike animals, new plant species tend to arise from small isolated populations that are at the extremes of a much larger ancestral range. Thus, a new plant starts off with a limited distribution, and because range size is an important criteria for Red List risk, it is also highly vulnerable.

The team’s analysis of anthropogenic factors turned up an additional surprise. For the Cape flora, human-induced habitat changes such as urbanization and agriculture cannot explain extinction risk of local plants. In other words, there is no simple geographic correspondence between human activity and plant decline. As the authors put it, places like the South African Cape might therefore be both “cradles and graveyards of diversity”, regardless of human activities.

This study suggests that a major strategy revision is in order if we want to conserve the world’s plants – a group that we all depend upon for oxygen and energy. More generally, risk criteria for one taxonomic group cannot necessarily be applied to another, since the pathways to rarity may be as foreign as the species themselves.

Further Reading

Davies, J. T. et al. 2011. PLoS Biology: 9(5): e1000620.

Cuttlefish strike a pose for 3D camouflage

In the game of hide and seek, cuttlefish have the upper hand. These chameleons of the sea are astonishingly good at disappearing: they can instantaneously change the colour of their skin to blend in with the background, matching even the finicky details like the pattern of coloured rocks on the ocean floor.

Divers have long known that cuttlefish are masters of the 3D camouflage game, too, and new research from the Wood’s Hole Oceanographic Institute has revealed how they do it.

Alexandra Barbosa, a graduate student, and Dr. Roger Hanlon were interested in the way cuttlefish strike a pose when trying to hide. After encountering a predator, these octopus-like animals will flee among the corals, rocks and algae, and freeze with their arms contorted into shapes that mimic nearby objects – a feat made all the more impressive by the fact that cuttlefish arms can bend in any direction. Some birds and insects are also known to camouflage themselves with body posture, but few come close to cuttlefish in shape-shifting flexibility (see photos of cephalopod camouflage in the wild here).

To understand just how they do it, Barbosa and her colleagues in Dr. Hanlon’s lab presented captive cuttlefish with some highly unusual surroundings: jailbird stripes, in black and white. In response, the cuttlefish got theatrical, raising their arms roughly parallel to the angle of the stripes. And when the researchers shifted the angle of the background image, the cuttlefish stretched their arms into a new position in an attempt to stay hidden.

Cuttlefish posing on artificial backgrounds

Cuttlefish posing against different backgrounds. Modified from Barbosa et al. 2011 (see Figure 1).

Intriguingly, not all of the ten individuals tested were able to match the angle perfectly all of the time – but these quirks may not be surprising given that cuttlefish camouflage is so complex. After all, in nature cephalopods get to choose their own hiding places, a decision that might involve several different factors. According to the researchers, camouflaged cuttlefish are even known to gently wave their arms to match the movement of the underwater plants they are trying to mimic.

These results are a clear demonstration that cuttlefish use vision to guide their 3D camouflage, since the study animals matched a flat background image. Moreover, Barbosa and Hanlon have shown that shape-shifting cephalopods can easily handle scenarios that would never occur in the environment where these behaviours evolved, and adjust just as flexibly to this artificial environment as they do in their natural habitats.

Captive experiments like this are just the first step in understanding how cuttlefish use visual cues to hide, and some big questions remain. For instance, little is known about how cuttlefish can detect and match colours so well despite the fact that they are, in effect, colourblind – Hanlon has found that giant Australian cuttlefish can take on the colouration of rocks on the ocean floor even in the middle of the night.

These remarkable split-second decisions about where, and how, to hide might also help us understand something bigger. Strategic camouflage is just one aspect of the surprising intelligence of cuttlefish, which have the largest brains for a given body size of any invertebrate – these animals are also able to learn and communicate with one another at a level that rivals many land-based animals. It will be intriguing to see where hide and seek fits in to the history of cephalopod brain evolution.

Further Reading

Barbosa, A. et al. 2011. Proceedings of the Royal Society B. In press.